Automatic Number Plate Recognition (ANPR) is an image processing technique that is used to extract the symbols (characters and digits) embedded on the number (license) plate to identify the vehicles. Huge numbers of ANPR techniques have been proposed by various researchers in the past. Most of the ANPR techniques are designed for restricted conditions due to the diversity of the license plate styles, environmental conditions etc. Not every technique is suited for all kinds of conditions. In general, the ANPR technique comprises of the following three stages; license plate detection (LPD); character segmentation; and character recognition. There exist a wide variety of techniques for carrying out each of the steps of the ANPR. Some score over others. This paper presents a State-of-the-Art survey of the various leading LPD techniques that exist today and an attempt has been made to summarize these techniques based on pros and cons and their limitations. Each technique is classified based on the features used at each stage of LPD. This survey shall help provide future direction towards the development of efficient and accurate techniques for ANPR. It shall also assist in identifying and shortlisting the methodologies that are best suited for the particular problem domain.
CITATION STYLE
Kumar, T. (2021). VEHICLE LICENSE PLATE DETECTION: A SURVEY. JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 16(10). https://doi.org/10.26782/jmcms.2021.10.00004
Mendeley helps you to discover research relevant for your work.