Inversion recovery radial MRI with interleaved projection sets

15Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The radial trajectory has found applications in cardiac imaging because of its resilience to undersampling and motion artifacts. Recent work has shown that interleaved and weighted radial imaging can produce images with multiple contrasts from a single data set. This feature was investigated for inversion recovery imaging of scar using a radial technique. The 20 radial imaging method was modified to acquire quadruply interleaved projection sets within each acquisition window of the cardiac cycle. These data were reconstructed using k-space weightings that used a smaller segment of the acquisition window for the central k-space data, the determinant of image contrast. This method generates four images with different T1 weightings. The novel approach was compared with noninterleaved radial imaging, interleaved radial without weightings, and Cartesian imaging in simulations, phantoms, and seven subjects with clinical myocardial infarction. The results show that during a typical acquisition window after an inversion pulse, magnetization changes rapidly. The interleaved acquisition provided better image quality than the noninterleaved radial acquisition. Interleaving with weighting provided better quality when the inversion time (TI) was shorter than optimal; otherwise, interleaving without weighting was superior. These methods enable a radial trajectory to be employed in conjunction with preparation pulses for viability imaging. © 2006 Wiley-Liss, Inc.

Cite

CITATION STYLE

APA

Peters, D. C., Botnar, R. M., Kissinger, K. V., Yeon, S. B., Appelbaum, E. A., & Manning, W. J. (2006). Inversion recovery radial MRI with interleaved projection sets. Magnetic Resonance in Medicine, 55(5), 1150–1156. https://doi.org/10.1002/mrm.20865

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free