A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue

119Citations
Citations of this article
170Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Benzoxaboroles are effective against bacterial, fungal and protozoan pathogens. We report potent activity of the benzoxaborole AN3661 against Plasmodium falciparum laboratory-adapted strains (mean IC50 32 nM), Ugandan field isolates (mean ex vivo IC50 64 nM), and murine P. berghei and P. falciparum infections (day 4 ED90 0.34 and 0.57 mg kg-1, respectively). Multiple P. falciparum lines selected in vitro for resistance to AN3661 harboured point mutations in pfcpsf3, which encodes a homologue of mammalian cleavage and polyadenylation specificity factor subunit 3 (CPSF-73 or CPSF3). CRISPR-Cas9-mediated introduction of pfcpsf3 mutations into parental lines recapitulated AN3661 resistance. PfCPSF3 homology models placed these mutations in the active site, where AN3661 is predicted to bind. Transcripts for three trophozoite-expressed genes were lost in AN3661-treated trophozoites, which was not observed in parasites selected or engineered for AN3661 resistance. Our results identify the pre-mRNA processing factor PfCPSF3 as a promising antimalarial drug target.

Cite

CITATION STYLE

APA

Sonoiki, E., Ng, C. L., Lee, M. C. S., Guo, D., Zhang, Y. K., Zhou, Y., … Rosenthal, P. J. (2017). A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nature Communications, 8. https://doi.org/10.1038/ncomms14574

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free