Although immunotherapy through programmed death 1/pro-grammed death ligand 1 (PD-1/PD-L1) checkpoint blockade has shown impressive clinical outcomes, not all patients respond to it. Recent studies have demonstrated that the expression level of PDL1 in tumors is one of the factors that correlate with PD-1/PD-L1 checkpoint blockade therapy. Herein, a 68Ga-labeled single-domain antibody tracer, 68Ga-NOTA-Nb109, was designed and developed for specific and noninvasive imaging of PD-L1 expression in a melanoma-bearing mouse model. Methods: The single-domain antibody Nb109 was labeled with the radionuclide 68Ga through a NOTA chelator. An in vitro binding assay was performed to assess the affinity and binding epitope of Nb109 to PD-L1. The clinical application value of 68Ga-NOTA-Nb109 was evaluated by a stability assay; by biodistribution and pharmacokinetics studies; and by PET imaging, autoradiography, and immunohistochemical staining studies on tumor-bearing models with differences in PD-L1 expression. Results: 68Ga-NOTA-Nb109 was obtained with a radiochemical yield of more than 95% and radiochemical purity of more than 98% in 10 min. It showed a highly specific affinity for PD-L1, with an equilibrium dissociation constant of 2.9 × 10−9 M. A competitive binding assay indicated Nb109 to have a binding epitope different from that of PD-1 and PD-L1 antibody. All biodistribution, PET imaging, autoradiography, and immunohistochemical staining studies revealed that 68Ga-NOTA-Nb109 specifically accumulated in A375-hPD-L1 tumor, with a maximum uptake of 5.0% ± 0.35% injected dose/g at 1 h. Conclusion: 68Ga-NOTA-Nb109 holds great potential for noninvasive PET imaging of the PD-L1 status in tumors and for timely evaluation of the effect of immune checkpoint targeting treatment.
CITATION STYLE
Lv, G., Sun, X., Qiu, L., Sun, Y., Li, K., Liu, Q., … Lin, J. (2020). PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody. Journal of Nuclear Medicine, 61(1), 117–122. https://doi.org/10.2967/jnumed.119.226712
Mendeley helps you to discover research relevant for your work.