Breast density pattern characterization by histogram features and texture descriptors

9Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Introduction: Breast cancer is the first leading cause of death for women in Brazil as well as in most countries in the world. Due to the relation between the breast density and the risk of breast cancer, in medical practice, the breast density classification is merely visual and dependent on professional experience, making this task very subjective. The purpose of this paper is to investigate image features based on histograms and Haralick texture descriptors so as to separate mammographic images into categories of breast density using an Artificial Neural Network. Methods: We used 307 mammographic images from the INbreast digital database, extracting histogram features and texture descriptors of all mammograms and selecting them with the K-means technique. Then, these groups of selected features were used as inputs of an Artificial Neural Network to classify the images automatically into the four categories reported by radiologists. Results: An average accuracy of 92.9% was obtained in a few tests using only some of the Haralick texture descriptors. Also, the accuracy rate increased to 98.95% when texture descriptors were mixed with some features based on a histogram. Conclusion: Texture descriptors have proven to be better than gray levels features at differentiating the breast densities in mammographic images. From this paper, it was possible to automate the feature selection and the classification with acceptable error rates since the extraction of the features is suitable to the characteristics of the images involving the problem.

Cite

CITATION STYLE

APA

Carneiro, P. C., Franco, M. L. N., De Lima Thomaz, R., & Patrocinio, A. C. (2017). Breast density pattern characterization by histogram features and texture descriptors. Revista Brasileira de Engenharia Biomedica, 33(1), 69–77. https://doi.org/10.1590/2446-4740.07916

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free