Optimized microfluidic formulation and organic excipients for improved lipid nanoparticle mediated genome editing

12Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.
Get full text

Abstract

mRNA-based gene editing platforms have tremendous promise in the treatment of genetic diseases. However, for this potential to be realized in vivo, these nucleic acid cargos must be delivered safely and effectively to cells of interest. Ionizable lipid nanoparticles (LNPs), the most clinically advanced non-viral RNA delivery system, have been well-studied for the delivery of mRNA but have not been systematically optimized for the delivery of mRNA-based CRISPR-Cas9 platforms. In this study, we investigated the effect of microfluidic and lipid excipient parameters on LNP gene editing efficacy. Through in vitro screening in liver cells, we discovered distinct trends in delivery based on phospholipid, cholesterol, and lipid-PEG structure in LNP formulations. Combination of top-performing lipid excipients produced an LNP formulation that resulted in 3-fold greater gene editing in vitro and facilitated 3-fold greater reduction of a therapeutically-relevant protein in vivo relative to the unoptimized LNP formulation. Thus, systematic optimization of LNP formulation parameters revealed a novel LNP formulation that has strong potential for delivery of gene editors to the liver to treat metabolic disease.

Cite

CITATION STYLE

APA

Palanki, R., Han, E. L., Murray, A. M., Maganti, R., Tang, S., Swingle, K. L., … Mitchell, M. J. (2024). Optimized microfluidic formulation and organic excipients for improved lipid nanoparticle mediated genome editing. Lab on a Chip, 24(16), 3790–3801. https://doi.org/10.1039/d4lc00283k

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free