Random Forest Classification of Land Use, Land-Use Change and Forestry (LULUCF) Using Sentinel-2 Data—A Case Study of Czechia

46Citations
Citations of this article
140Readers
Mendeley users who have this article in their library.

Abstract

Land use, land-use change and forestry (LULUCF) is a greenhouse gas inventory sector that evaluates greenhouse gas changes in the atmosphere from land use and land-use change. This study focuses on the development of a Sentinel-2 data classification according to the LULUCF requirements on the cloud-based platform Google Earth Engine (GEE). The methods are tested in selected larger territorial regions (two Czech NUTS 2 units) using data collected in 2018. The Random Forest method was used for classification. In terms of classification accuracy, a combination of these parameters was tested: The Number of Trees (NT), the Variables per Split (VPS) and the Bag Fraction (BF). A total of 450 combinations of different parameters were tested. The highest accuracy classification with an overall accuracy = 89.1% and Cohen’s Kappa = 0.84 had the following combination: NT = 150, VPS = 3 and BF = 0.1. For classification purposes, a mosaic was created using the median method. The resulting mosaic consisted of all Sentinel-2 bands in 10 and 20 m spatial resolution. Altitude values derived from SRTM and NDVI variance values were also included in the classification. These added bands were the most significant in terms of Gini importance.

Cite

CITATION STYLE

APA

Svoboda, J., Štych, P., Laštovička, J., Paluba, D., & Kobliuk, N. (2022). Random Forest Classification of Land Use, Land-Use Change and Forestry (LULUCF) Using Sentinel-2 Data—A Case Study of Czechia. Remote Sensing, 14(5). https://doi.org/10.3390/rs14051189

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free