Strength is in numbers: Can concordant artificial listeners improve prediction of emotion from speech?

5Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

Abstract

Humans can communicate their emotions by modulating facial expressions or the tone of their voice. Albeit numerous applications exist that enable machines to read facial emotions and recognize the content of verbal messages, methods for speech emotion recognition are still in their infancy. Yet, fast and reliable applications for emotion recognition are the obvious advancement of present 'intelligent personal assistants', and may have countless applications in diagnostics, rehabilitation and research. Taking inspiration from the dynamics of human group decision-making, we devised a novel speech emotion recognition system that applies, for the first time, a semi-supervised prediction model based on consensus. Three tests were carried out to compare this algorithm with traditional approaches. Labeling performances relative to a public database of spontaneous speeches are reported. The novel system appears to be fast, robust and less computationally demanding than traditional methods, allowing for easier implementation in portable voice-analyzers (as used in rehabilitation, research, industry, etc.) and for applications in the research domain (such as real-time pairing of stimuli to participants' emotional state, selective/differential data collection based on emotional content, etc.).

Cite

CITATION STYLE

APA

Martinelli, E., Mencattini, A., Daprati, E., & Di Natale, C. (2016). Strength is in numbers: Can concordant artificial listeners improve prediction of emotion from speech? PLoS ONE, 11(8). https://doi.org/10.1371/journal.pone.0161752

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free