Highly Efficient Architecture of NewHope-NIST on FPGA using Low-Complexity NTT/INTT

  • Zhang N
  • Yang B
  • Chen C
  • et al.
N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

NewHope-NIST is a promising ring learning with errors (RLWE)-based postquantum cryptography (PQC) for key encapsulation mechanisms. The performance on the field-programmable gate array (FPGA) affects the applicability of NewHope-NIST. In RLWE-based PQC algorithms, the number theoretic transform (NTT) is one of the most time-consuming operations. In this paper, low-complexity NTT and inverse NTT (INTT) are used to implement highly efficient NewHope-NIST on FPGA. First, both the pre-processing of NTT and the post-processing of INTT are merged into the fast Fourier transform (FFT) algorithm, which reduces N and 2N modular multiplications for N-point NTT and INTT, respectively. Second, a compact butterfly unit and an efficient modular reduction on the modulus 12289 are proposed for the low-complexity NTT/INTT architecture, which achieves an improvement of approximately 3× in the area time product (ATP) compared with the results of the state-of-the-art designs. Finally, a highly efficient architecture with doubled bandwidth and timing hiding for NewHope-NIST is presented. The implementation results on an FPGA show that our design is at least 2.5× faster and has 4.9× smaller ATP compared with the results of the state-of-the-art designs of NewHope-NIST on similar platforms.

Cite

CITATION STYLE

APA

Zhang, N., Yang, B., Chen, C., Yin, S., Wei, S., & Liu, L. (2020). Highly Efficient Architecture of NewHope-NIST on FPGA using Low-Complexity NTT/INTT. IACR Transactions on Cryptographic Hardware and Embedded Systems, 49–72. https://doi.org/10.46586/tches.v2020.i2.49-72

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free