Matching pursuit with asymmetric functions for signal decomposition and parameterization

10Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

The method of adaptive approximations by Matching Pursuit makes it possible to decompose signals into basic components (called atoms). The approach relies on fitting, in an iterative way, functions from a large predefined set (called dictionary) to an analyzed signal. Usually, symmetric functions coming from the Gabor family (sine modulated Gaussian) are used. However Gabor functions may not be optimal in describing waveforms present in physiological and medical signals. Many biomedical signals contain asymmetric components, usually with a steep rise and slower decay. For the decomposition of this kind of signal we introduce a dictionary of functions of various degrees of asymmetry - from symmetric Gabor atoms to highly asymmetric waveforms. The application of this enriched dictionary to Otoacoustic Emissions and Steady-State Visually Evoked Potentials demonstrated the advantages of the proposed method. The approach provides more sparse representation, allows for correct determination of the latencies of the components and removes the "energy leakage" effect generated by symmetric waveforms that do not sufficiently match the structures of the analyzed signal. Additionally, we introduced a time-frequency-amplitude distribution that is more adequate for representation of asymmetric atoms than the conventional time-frequency-energy distribution.

Cite

CITATION STYLE

APA

Spustek, T., Jedrzejczak, W. W., & Blinowska, K. J. (2015). Matching pursuit with asymmetric functions for signal decomposition and parameterization. PLoS ONE, 10(6). https://doi.org/10.1371/journal.pone.0131007

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free