Characterization of multicellular breast tumor spheroids using image data-driven biophysical mathematical modeling

16Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Multicellular tumor spheroid (MCTS) systems provide an in vitro cell culture model system which mimics many of the complexities of an in vivo solid tumor and tumor microenvironment, and are often used to study cancer cell growth and drug efficacy. Here, we present a coupled experimental-computational framework to estimate phenotypic growth and biophysical tumor microenvironment properties. This novel framework utilizes standard microscopy imaging of MCTS systems to drive a biophysical mathematical model of MCTS growth and mechanical interactions. By extending our previous in vivo mechanically-coupled reaction–diffusion modeling framework we developed a microscopy image processing framework capable of mechanistic characterization of MCTS systems. Using MDA-MB-231 breast cancer MCTS, we estimated biophysical parameters of cellular diffusion, rate of cellular proliferation, and cellular tractions forces. We found significant differences in these model-based biophysical parameters throughout the treatment time course between untreated and treated MCTS systems, whereas traditional size-based morphometric parameters were inconclusive. The proposed experimental-computational framework estimates mechanistic MCTS growth and invasion parameters with significant potential to assist in better and more precise assessment of in vitro drug efficacy through the development of computational analysis methodologies for three-dimensional cell culture systems to improve the development and evaluation of antineoplastic drugs.

Cite

CITATION STYLE

APA

Bowers, H. J., Fannin, E. E., Thomas, A., & Weis, J. A. (2020). Characterization of multicellular breast tumor spheroids using image data-driven biophysical mathematical modeling. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68324-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free