Release of VEGF from dental implant improves osteogenetic process: Preliminary in vitro tests

19Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

Introduction: During osseointegration process, the presence of an inflammatory event could negatively influence the proper osteogenetic ability of the implant surface. In order to reduce this possibility, an implementation of angiogenetic event through the release of Vascular Endothelial Growth Factor (VEGF) can be a tool as co-factor for osteoblastic differentiation. In this paper, novel dental implant surfaces enriched with VEGF have been tested. Material and methods: The ability of VEGF-enriched titanium implants to improve the osteogenetic properties of Mesenchymal stem cells (MSC), also in the presence of an inflammatory environment, have been in vitro tested. Molecular biology, morphological analyses, and biochemical tests have been performed in order to confirm biological properties of these surfaces. Results: Our results confirm that the presence of VEGF onto the implant surface is able not only to protect the cells from in vitro aging and from Reactive Oxygen Species (ROS) damage, but it also improves their osteogenic and endothelial differentiation, even in the presence of inflammatory cytokines. Conclusion: This study establishes a biologically powerful novel tool that could enhance bone repair in dental implant integration.

Cite

CITATION STYLE

APA

Zavan, B., Ferroni, L., Gardin, C., Sivolella, S., Piattelli, A., & Mijiritsky, E. (2017). Release of VEGF from dental implant improves osteogenetic process: Preliminary in vitro tests. Materials, 10(9). https://doi.org/10.3390/ma10091052

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free