Effect of Perforation Shapes on the Heat Transfer Characteristic of Perforated Fins

  • et al.
N/ACitations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A large number of engineering applications required rapid heat dissipation from its surface. This is achieved by the use of the fins i.e. increasing the surface area. Enhancement of heat transfer and reduction in the weight is the major criteria for designing the fins. The main objective of this project is to enhance the heat transfer through the use of perforated fin. A large number of study have been conducted on shape modification by cutting some material from fins to make holes, cavity, slots, groves or channel through the fin body to increase flow area. A rectangular fin of dimension 100 mm. x 200 mm. x 2 mm. and area of perforation is 100 mm2 was selected. The number of perforation was varied from 20, 28, 36 and 44. It was found that maximum temperature drop occurred with 44 perforations. With the same fin with 44 perforation, temperature drop and heat transfer was analysed for different shapes (circular, square, oriented square, pentagon and elliptical) of perforation. I was found that in case of different shape of perforation with same cross sectional area, weight is nearly reduced by 28.42 % for elliptical perforation (a/b>3) was most effective in which 32.20 % more temperature drop and maximum average heat flux as compared to other perforation shape.

Cite

CITATION STYLE

APA

Dubey*, C. K., Singh, A. K., & Sinha, S. (2019). Effect of Perforation Shapes on the Heat Transfer Characteristic of Perforated Fins. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 1394–1400. https://doi.org/10.35940/ijrte.d7354.118419

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free