Detection of SQL Injection Attack Using Machine Learning Techniques: A Systematic Literature Review

88Citations
Citations of this article
315Readers
Mendeley users who have this article in their library.

Abstract

An SQL injection attack, usually occur when the attacker(s) modify, delete, read, and copy data from database servers and are among the most damaging of web application attacks. A successful SQL injection attack can affect all aspects of security, including confidentiality, integrity, and data availability. SQL (structured query language) is used to represent queries to database management systems. Detection and deterrence of SQL injection attacks, for which techniques from different areas can be applied to improve the detect ability of the attack, is not a new area of research but it is still relevant. Artificial intelligence and machine learning techniques have been tested and used to control SQL injection attacks, showing promising results. The main contribution of this paper is to cover relevant work related to different machine learning and deep learning models used to detect SQL injection attacks. With this systematic review, we aims to keep researchers up-to-date and contribute to the understanding of the intersection between SQL injection attacks and the artificial intelligence field.

Cite

CITATION STYLE

APA

Alghawazi, M., Alghazzawi, D., & Alarifi, S. (2022). Detection of SQL Injection Attack Using Machine Learning Techniques: A Systematic Literature Review. Journal of Cybersecurity and Privacy, 2(4), 764–777. https://doi.org/10.3390/jcp2040039

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free