Abstract
The mammalian positioning system contains a variety of functionally specialized cells in the medial entorhinal cortex (MEC) and the hippocampus. In order for cells in these systems to dynamically update representations in a way that reflects ongoing movement in the environment, they must be able to read out the current speed of the animal. Speed is encoded by speed-responsive cells in both MEC and hippocampus, but the relationship between the two populations has not been determined. We show here that many entorhinal speed cells are fast-spiking putative GABAergic neurons. Using retrograde viral labeling from the hippocampus, we find that a subset of these fast-spiking MEC speed cells project directly to hippocampal areas. This projection contains parvalbumin (PV) but not somatostatin (SOM)-immunopositive cells. The data point to PV-expressing GABAergic projection neurons in MEC as a source for widespread speed modulation and temporal synchronization in entorhinal–hippocampal circuits for place representation.
Author supplied keywords
Cite
CITATION STYLE
Ye, J., Witter, M. P., Moser, M. B., & Moser, E. I. (2018). Entorhinal fast-spiking speed cells project to the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 115(7), E1627–E1636. https://doi.org/10.1073/pnas.1720855115
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.