Direct binding of DNA by tumor suppressor menin

74Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Menin is a tumor suppressor that is mutated in patients with multiple endocrine neoplasia type I (MEN1), an inherited tumor-prone syndrome. Because there is no obvious conserved structural domain in menin that suggests a biochemical function, little is known as to how menin suppresses tumorigenisis. Although menin interacts with a variety of nuclear proteins including transcription factors, it is unknown whether menin itself can directly bind DNA. Here we show that menin directly binds to double-stranded DNA. It also binds a variety of DNA structures, including Y-structures, branched structures, and 4-way junction structures. The COOH terminus of menin mediates binding to DNA, but MEN1 disease-derived mutations in the COOH terminus abolish the ability of menin to bind DNA. Importantly, these MEN1 disease-related menin mutants also fail to repress cell proliferation as well as cell cycle progression at the G2/M phase. Furthermore, detailed mutagenesis studies indicate that positively charged residues in two nuclear localization signals mediate direct DNA binding as well as repression of cell proliferation. Collectively, these results demonstrate, for the first time, a novel biochemical activity of menin, binding to DNA, and link its DNA binding to the regulation of cell proliferation.

Cite

CITATION STYLE

APA

La, P., Silva, A. C., Hou, Z., Wang, H., Schnepp, R. W., Yan, N., … Hua, X. (2004). Direct binding of DNA by tumor suppressor menin. Journal of Biological Chemistry, 279(47), 49045–49054. https://doi.org/10.1074/jbc.M409358200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free