Abstract
We have successfully demonstrated the design and microfabrication of piezoelectric rubber bands and their application in energy harvesting from human motions. Composite polymeric and metallic microstructures with embedded bipolar charges are employed to realize the desired stretchability and electromechanical sensitivity. In the prototype demonstration, multilayer PDMS cellular structures coated with PTFE films and stretchable gold electrodes are fabricated and implanted with bipolar charges. The composite structures show elasticity of 300∼600 kPa and extreme piezoelectricity of d33 >2000 pC/N and d31 >200 pC/N. For a working volume of 2.5cm×2.5cm×0.3mm, 10% (or 2.5mm) stretch results in effective d31 of >17000 pC/N. It is estimated that electric charge of >0.2 μC can be collected and stored per breath (or 2.5cm deformation). As such, the composite piezoelectric rubber bands (with spring constants of ∼200 N/m) can be mounted on elastic waistbands to harvest the circumferential stretch during breathing, or on pads around joints to harvest the elongation during limb motion. Furthermore, the wearable piezoelectric structures can be spread, stacked and connected to charge energy storages and power micro devices.
Cite
CITATION STYLE
Wang, J. J., Su, H. J., Hsu, C. I., & Su, Y. C. (2014). Composite piezoelectric rubber band for energy harvesting from breathing and limb motion. In Journal of Physics: Conference Series (Vol. 557). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/557/1/012022
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.