Learning Polar Encodings for Arbitrary-Oriented Ship Detection in SAR Images

53Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Common horizontal bounding box-based methods are not capable of accurately locating slender ship targets with arbitrary orientations in synthetic aperture radar (SAR) images. Therefore, in recent years, methods based on oriented bounding box (OBB) have gradually received attention from researchers. However, most of the recently proposed deep learning-based methods for OBB detection encounter the boundary discontinuity problem in angle or key point regression. In order to alleviate this problem, researchers propose to introduce some manually set parameters or extra network branches for distinguishing the boundary cases, which make training more difficult and lead to performance degradation. In this article, in order to solve the boundary discontinuity problem in OBB regression, we propose to detect SAR ships by learning polar encodings. The encoding scheme uses a group of vectors pointing from the center of the ship target to the boundary points to represent an OBB. The boundary discontinuity problem is avoided by training and inference directly according to the polar encodings. In addition, we propose an intersect over union (IOU)-weighted regression loss, which further guides the training of polar encodings through the IOU metric and improves the detection performance. Comparative experiments on the benchmark Rotating SAR Ship Detection Dataset (RSSDD) demonstrate the effectiveness of our proposed method in terms of enhanced detection performance over state-of-the-art algorithms and other OBB encoding schemes.

Cite

CITATION STYLE

APA

He, Y., Gao, F., Wang, J., Hussain, A., Yang, E., & Zhou, H. (2021). Learning Polar Encodings for Arbitrary-Oriented Ship Detection in SAR Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 3846–3859. https://doi.org/10.1109/JSTARS.2021.3068530

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free