The prediction of rockfall travel distance below a rock cliff is an indispensable activity in rockfall susceptibility, hazard and risk assessment. Although the size of the detached rock mass may differ considerably at each specific rock cliff, small rockfall (<100 m3) is the most frequent process. Empirical models may provide us with suitable information for predicting the travel distance of small rockfalls over an extensive area at a medium scale (1:100 000-1:25 000). "Solá d'Andorra la Vella" is a rocky slope located close to the town of Andorra la Vella, where the government has been documenting rockfalls since 1999. This documentation consists in mapping the release point and the individual fallen blocks immediately after the event. The documentation of historical rockfalls by morphological analysis, eye-witness accounts and historical images serve to increase available information. In total, data from twenty small rockfalls have been gathered which reveal an amount of a hundred individual fallen rock blocks. The data acquired has been used to check the reliability of the main empirical models widely adopted (reach and shadow angle models) and to analyse the influence of parameters which affecting the travel distance (rockfall size, height of fall along the rock cliff and volume of the individual fallen rock block). For predicting travel distances in maps with medium scales, a method has been proposed based on the "reach probability" concept. The accuracy of results has been tested from the line entailing the farthest fallen boulders which represents the maximum travel distance of past rockfalls. The paper concludes with a discussion of the application of both empirical models to other study areas.
CITATION STYLE
Copons, R., Vilaplana, J. M., & Linares, R. (2009). Rockfall travel distance analysis by using empirical models (Solà d’Andorra la Vella, Central Pyrenees). Natural Hazards and Earth System Science, 9(6), 2107–2118. https://doi.org/10.5194/nhess-9-2107-2009
Mendeley helps you to discover research relevant for your work.