Abstract
Randomized mutagenesis at an endogenous chromosomal locus is a promising approach for protein engineering, functional assessment of regulatory elements, and modeling genetic variations. In mammalian cells, however, it is challenging to perform site-specific single-nucleotide substitution with single-stranded oligodeoxynucleotide (ssODN) donor templates due to insufficient homologous recombination and the infeasibility of positive selection. Here, we developed a DNA transposon based CRISPR-Cas9 regulated transcription and nuclear shuttling (CRONUS) system that enables the stable transduction of CRISPR-Cas9/sgRNA in broad cell types, but avoids undesired genome cleavage in the absence two chemical inducing molecules. Highly efficient single nucleotide alterations induced randomization of desired codons (up to 4 codons) at a defined genomic locus in various human cell lines, including human iPS cells. Thus, CRONUS provides a novel platform for modeling diseases and genetic variations.
Cite
CITATION STYLE
Ishida, K., Xu, H., Sasakawa, N., Lung, M. S. Y., Kudryashev, J. A., Gee, P., & Hotta, A. (2018). Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-017-18568-4
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.