Over the past decade, a wide attention has been paid to the crowd control and management in intelligent video surveillance area. Among the tasks of automatic video-based crowd management, crowd motion modeling is recognized as one of the most critical components, since it lays a crucial foundation for numerous subsequent analyses. However, it still encounters many unsolved challenges due to occlusions among pedestrians, complicated motion patterns in crowded scenarios, and so forth. Addressing these issues, we propose a novel spatiotemporal Weber field, which integrates both appearance characteristics and stimulus of crowd motion patterns, to recognize the large-scale crowd event. On the one hand, crowd motion is recognized as variations of spatiotemporal signal, and we then measure the variation based on Weber law. The result is referred to as spatiotemporal Weber variation feature. On the other hand, motivated by the achievements in crowd dynamics that crowd motion has a close relationship with interaction force, we propose a spatiotemporal Weber force feature to exploit the stimulus of crowd behaviors. Finally, we utilize the latent Dirichlet allocation model to establish the relationship between crowd events and crowd motion patterns. Experiments on PETS2009 and UMN databases demonstrate that our proposed method outperforms the previous methods for the large-scale crowd behavior perception. © 2014 Zhou Su et al.
CITATION STYLE
Su, Z., Wei, H., & Wei, S. (2014). Crowd event perception based on spatiotemporal Weber field. Journal of Electrical and Computer Engineering. https://doi.org/10.1155/2014/719810
Mendeley helps you to discover research relevant for your work.