Deep-learning-powered photonic analog-to-digital conversion

86Citations
Citations of this article
109Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Analog-to-digital converters (ADCs) must be high speed, broadband, and accurate for the development of modern information systems, such as radar, imaging, and communications systems; photonic technologies are regarded as promising technologies for realizing these advanced requirements. Here, we present a deep-learning-powered photonic ADC architecture that simultaneously exploits the advantages of electronics and photonics and overcomes the bottlenecks of the two technologies, thereby overcoming the ADC tradeoff among speed, bandwidth, and accuracy. Via supervised training, the adopted deep neural networks learn the patterns of photonic system defects and recover the distorted data, thereby maintaining the high quality of the electronic quantized data succinctly and adaptively. The numerical and experimental results demonstrate that the proposed architecture outperforms state-of-the-art ADCs with developable high throughput; hence, deep learning performs well in photonic ADC systems. We anticipate that the proposed architecture will inspire future high-performance photonic ADC design and provide opportunities for substantial performance enhancement for the next-generation information systems.

Cite

CITATION STYLE

APA

Xu, S., Zou, X., Ma, B., Chen, J., Yu, L., & Zou, W. (2019). Deep-learning-powered photonic analog-to-digital conversion. Light: Science and Applications, 8(1). https://doi.org/10.1038/s41377-019-0176-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free