A parametric study of an unbalanced Jeffcott rotor supported by a rolling-element bearing

30Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Rolling-element bearings are widely used in industrial rotating machines, and hence there is a strong need to accurately predict their influence on the response of such systems. However, this can be challenging due to an interaction between the dynamics of the rotor and the bearing nonlinearities, and it becomes difficult to provide a physical explanation for the nonlinear response. A novel approach, combining a Jeffcott rotor supported by a detailed bearing model with the generalised harmonic balance method, is presented, enabling an in-depth study of the complex rotor–stator interaction. This allows the quasi-periodic response of the rotor, due to variable compliance, to be captured, and the impact of clearance, ring and stator compliance, and centrifugal loading of the bearing on the response to be investigated. A strongly nonlinear response was observed due to the bearing, leading to large shifts in frequency as the excitation amplitude was increased, and the emergence of stable and unstable operating regions. The variable compliance effect generated sub-synchronous forcing, which led to sub-resonances when the ball pass frequency coincided with the frequency of one of the modes. Radial clearance in the bearing had by far the largest influence on the unbalance response, the self-excitation due to variable compliance, and the stability. Introducing outer ring compliance was found to slightly soften the system, and centrifugal loading on the bearing elements marginally increased the system’s region of instability, but neither of these effects had a significant impact on the response for the investigated bearing. When the bearing was mounted on a sufficiently compliant stator, the system was found to behave linearly.

Cite

CITATION STYLE

APA

Haslam, A. H., Schwingshackl, C. W., & Rix, A. I. J. (2020). A parametric study of an unbalanced Jeffcott rotor supported by a rolling-element bearing. Nonlinear Dynamics, 99(4), 2571–2604. https://doi.org/10.1007/s11071-020-05470-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free