Cycling non-aqueous lithium-air batteries with dimethyl sulfoxide and sulfolane co-solvent

6Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Despite considerable research efforts, finding a chemically stable electrolyte mixture in the presence of reduced oxygen species remains a great challenge. Previously, dimethyl sulfoxide (DMSO) and sulfolane (tetramethylene sulfone (TMS))-based electrolytes were reported to be stable for lithium air (Li-O2) battery applications. Recently lithium hydroxide (LiOH) based chemistries have been demonstrated to involve supressed side reactions in water-added ether- and DMSO-based electrolytes. Herein, we investigate the impact of DMSO-based electrolyte and sulfolane co-solvent on cell chemistry in the presence of water. We found that DMSO-based electrolyte leads to formation of a peroxide-hydroxide mixture as discharge products and the removal of both LiOH and lithium peroxide (Li2O2) on charging from 3.2-3.6 V (vs. Li+/Li) is observed. In the presence of sulfolane as co-solvent, a mixture of Li2O2 and LiOH is formed as major discharge products with slightly more LiOH formation than in the absence of sulfolane. The presence of sulfolane has also significant effects on the charging behaviour, exhibiting a clearer 3 e-/O2 oxygen evolution reaction profile during the entire charging process. This work provides insights into understanding the effects of the primary solvent on promoting LiOH formation and decomposition in lithium iodide (LiI) mediated non-aqueous Li-O2 batteries.

Cite

CITATION STYLE

APA

Kim, G., Liu, T., Temprano, I., Petrucco, E. A., Barrow, N., & Grey, C. P. (2018). Cycling non-aqueous lithium-air batteries with dimethyl sulfoxide and sulfolane co-solvent. Johnson Matthey Technology Review, 62(3), 332–340. https://doi.org/10.1595/205651318X15233499272318

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free