Scaling Regimes of Active Turbulence with External Dissipation

41Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

Abstract

Active fluids exhibit complex turbulentlike flows at low Reynolds number. Recent work predicted that 2D active nematic turbulence follows scaling laws with universal exponents. However, experimentally testing these predictions is conditioned by the coupling to the 3D environment. Here, we measure the spectrum of the kinetic energy in an active nematic film in contact with a passive oil layer. At small and intermediate scales, we find the scaling regimes and , respectively, in agreement with the theoretical prediction for 2D active nematics. At large scales, however, we find a new scaling , which emerges when the dissipation is dominated by the 3D oil layer. In addition, we derive an explicit expression for the spectrum that spans all length scales, thus explaining and connecting the different scaling regimes. This allows us to fit the data and extract the length scale that controls the crossover to the new large-scale regime, which we tune by varying the oil viscosity. Overall, our work experimentally demonstrates the emergence of scaling laws with universal exponents in active turbulence, and it establishes how the spectrum is affected by external dissipation.

Cite

CITATION STYLE

APA

Martínez-Prat, B., Alert, R., Meng, F., Ignés-Mullol, J., Joanny, J. F., Casademunt, J., … Sagués, F. (2021). Scaling Regimes of Active Turbulence with External Dissipation. Physical Review X, 11(3). https://doi.org/10.1103/PhysRevX.11.031065

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free