PS-GCN: psycholinguistic graph and sentiment semantic fused graph convolutional networks for personality detection

9Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Personality detection identifies personality traits in text. Current approaches often rely on deep learning networks for text representation but they overlook the significance of psychological language knowledge in connecting user language expression to psychological characteristics. Consequently, the accuracy of personality detection is compromised. To address this issue, this paper presents PS-GCN, a model integrating Psychological knowledge and Sentiment semantic features through Graph Convolution Networks. Firstly, the Bi-LSTM network captures local features of preprocessed sentences to accurately represent the output of sentence sentiment features. Secondly,  GCNs map psycholinguistic knowledge, forming semantic networks of entities and relationships. P-GCN is designed to capture the dependency information between psycholinguistic features, while S-GCN utilises syntactic structure analysis to gather more abundant information features and enhance semantic understanding ability. Finally, attention calculation is employed to reinforce key features and weaken irrelevant information. Additionally, a sentence group model captures combined features of related sentences, effectively utilising the text structure to mine sentimental features. Experimental results on multiple datasets demonstrate that the proposed method significantly improves the classification accuracy in personality detection tasks.

Cite

CITATION STYLE

APA

Liu, W., Sun, Z., Wei, S., Zhang, S., Zhu, G., & Chen, L. (2024). PS-GCN: psycholinguistic graph and sentiment semantic fused graph convolutional networks for personality detection. Connection Science, 36(1). https://doi.org/10.1080/09540091.2023.2295820

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free