High-dimensional, massive sample-size Cox proportional hazards regression for survival analysis

31Citations
Citations of this article
95Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Survival analysis endures as an old, yet active research field with applications that spread across many domains. Continuing improvements in data acquisition techniques pose constant challenges in applying existing survival analysis methods to these emerging data sets. In this paper, we present tools for fitting regularized Cox survival analysis models on high-dimensional, massive sample-size (HDMSS) data using a variant of the cyclic coordinate descent optimization technique tailored for the sparsity that HDMSS data often present. Experiments on two real data examples demonstrate that efficient analyses of HDMSS data using these tools result in improved predictive performance and calibration. © 2013 The Author 2013.

Cite

CITATION STYLE

APA

Mittal, S., Madigan, D., Burd, R. S., & Suchard, M. A. (2014). High-dimensional, massive sample-size Cox proportional hazards regression for survival analysis. Biostatistics, 15(2), 207–221. https://doi.org/10.1093/biostatistics/kxt043

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free