Although cavitation is common in plants, it is unknown whether the cavitation resistance of xylem is seasonally constant or variable. We tested the changes in cavitation resistance of Acer mono before and after a controlled cavitation–refilling and freeze–thaw cycles for a whole year. Cavitation resistance was determined from ‘vulnerability curves’ showing the percent loss of conductivity versus xylem tension. Cavitation fatigue was defined as a reduction of cavitation resistance following a cavitation–refilling cycle, whereas frost fatigue was caused by a freeze–thaw cycle. A. mono developed seasonal changes in native embolisms; values were relatively high during winter but relatively low and constant throughout the growing season. Cavitation fatigue occurred and changed seasonally during the 12-month cycle; the greatest fatigue response occurred during summer and the weakest during winter, and the transitions occurred during spring and autumn. A. mono was highly resistant to frost damage during the relatively mild winter months; however, a quite different situation occurred during the growing season, as the seasonal trend of frost fatigue was strikingly similar to that of cavitation fatigue. Seasonality changes in cavitation resistance may be caused by seasonal changes in the mechanical properties of the pit membranes.
CITATION STYLE
Zhang, W., Feng, F., & Tyree, M. T. (2018). Seasonality of cavitation and frost fatigue in Acer mono Maxim. Plant Cell and Environment, 41(6), 1278–1286. https://doi.org/10.1111/pce.13117
Mendeley helps you to discover research relevant for your work.