Development of a New Robust Stable Walking Algorithm for a Humanoid Robot Using Deep Reinforcement Learning with Multi-Sensor Data Fusion

10Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

The difficult task of creating reliable mobility for humanoid robots has been studied for decades. Even though several different walking strategies have been put forth and walking performance has substantially increased, stability still needs to catch up to expectations. Applications for Reinforcement Learning (RL) techniques are constrained by low convergence and ineffective training. This paper develops a new robust and efficient framework based on the Robotis-OP2 humanoid robot combined with a typical trajectory-generating controller and Deep Reinforcement Learning (DRL) to overcome these limitations. This framework consists of optimizing the walking trajectory parameters and posture balancing system. Multi-sensors of the robot are used for parameter optimization. Walking parameters are optimized using the Dueling Double Deep Q Network (D3QN), one of the DRL algorithms, in the Webots simulator. The hip strategy is adopted for the posture balancing system. Experimental studies are carried out in both simulation and real environments with the proposed framework and Robotis-OP2’s walking algorithm. Experimental results show that the robot performs more stable walking with the proposed framework than Robotis-OP2’s walking algorithm. It is thought that the proposed framework will be beneficial for researchers studying in the field of humanoid robot locomotion.

Cite

CITATION STYLE

APA

Kaymak, Ç., Uçar, A., & Güzeliş, C. (2023). Development of a New Robust Stable Walking Algorithm for a Humanoid Robot Using Deep Reinforcement Learning with Multi-Sensor Data Fusion. Electronics (Switzerland), 12(3). https://doi.org/10.3390/electronics12030568

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free