Ketamine exposure can lead to selective neuroapoptosis in the developing brain. p66ShcA, the cellular adapter protein expressed selectively in immature neurons, is a known pro-apoptotic molecule that triggers neuroapoptosis when activated. Sprague-Dawley rats at postnatal day 7 were subcutaneously injected in the neck with ketamine 20 mg/kg, six times at 2-hour intervals. At 0, 1, 3, and 6 hours after final injection, western blot assay was used to detect the expression of cleaved caspase-3, p66ShcA, and phosphorylated p66ShcA. We found that the expression of activated p66ShcA and caspase-3 increased after ketamine exposure and peaked at 3 hours. The same procedure was performed on a different group of rats. At the age of 4 weeks, spatial learning and memory abilities were tested with the Morris water maze. Latency to find the hidden platform for these rats was longer than it was for control rats, although the residence time in the target quadrant was similar. These findings indicate that ketamine exposure resulted in p66ShcA being activated in the course of an apoptotic cascade during the neonatal period. This may have contributed to the deficit in spatial learning and memory that persisted into adulthood.
CITATION STYLE
Lyu, D., Tang, N., Womack, A., He, Y. J., & Lin, Q. (2020). Neonatal ketamine exposure-induced hippocampal neuroapoptosis in the developing brain impairs adult spatial learning ability. Neural Regeneration Research, 15(5), 880–886. https://doi.org/10.4103/1673-5374.268929
Mendeley helps you to discover research relevant for your work.