Abstract
Context: Altered neuromuscular control strategies during fatigue probably contribute to the increased incidence of non-contact anterior cruciate ligament injuries in female athletes. Objective: To determine biomechanical differences between 2 fatigue protocols (slow linear oxidative fatigue protocol [SLO-FP] and functional agility short-term fatigue protocol [FAST-FP]) when performing a running-stop-jump task. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: A convenience sample of 15 female soccer players (age = 19.2 ±0.8 years, height = 1.67±0.05m, mass = 61.7±8.1 kg) without injury participated. Intervention(s): Five successful trials of a running-stop-jump task were obtained prefatigue and postfatigue during the 2 protocols. For the SLO-FP, a peak oxygen consumption (V̇o2peak) test was conducted before the fatigue protocol. Five minutes after the conclusion of the V̇o2peak test, participants started the fatigue protocol by performing a 30-minute interval run. The FAST-FP consisted of 4 sets of a functional circuit. Repeated 2 (fatigue protocol) × 2 (time) analyses of variance were conducted to assess differences between the 2 protocols and time (prefatigue, postfatigue). Main Outcome Measure(s): Kinematic and kinetic measures of the hip and knee were obtained at different times while participants performed both protocols during prefatigue and postfatigue. Results: Internal adduction moment at initial contact (IC) was greater during FAST-FP (0.064 ±0.09 Nm/kgm) than SLO-FP (0.024±0.06 Nm/kgm) (F1,14 = 5.610, P=.03). At IC, participants had less hip flexion postfatigue (44.7°±8.1°) than prefatigue (50.1°±9.5°) (F1,14 = 16.229, P=.001). At peak vertical ground reaction force, participants had less hip flexion postfatigue (44.7°±8.4°) than prefatigue (50.4°±10. 3°) (F1,14 = 17.026, P=.001). At peak vertical ground reaction force, participants had less knee flexion postfatigue (-35.9°±6. 5°) than prefatigue (-38.8° ±5.03°) (F1,14 = 11.537, P= .001). Conclusions: Our results demonstrated a more erect landing posture due to a decrease in hip and knee flexion angles in the postfatigue condition. The changes were similar between protocols; however, the FAST-FP was a clinically applicable 5-minute protocol, whereas the SLO-FP lasted approximately 45 minutes. © by the National Athletic Trainers' Association, Inc.
Author supplied keywords
Cite
CITATION STYLE
Quammen, D., Cortes, N., Van Lunen, B. L., Lucci, S., Ringleb, S. I., & Onate, J. (2012). Two different fatigue protocols and lower extremity motion patterns during a stop-jump task. Journal of Athletic Training, 47(1), 32–41. https://doi.org/10.4085/1062-6050-47.1.32
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.