Crystal structure of Bacillus thuringiensis Cry7Ca1 toxin active against Locusta migratoria manilensis

12Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Insecticidal crystal (Cry) proteins produced by Bacillus thuringiensis (Bt) are widely used as environmentally friendly insecticides. As the only known Cry protein with insecticidal activity against Locusta migratoria manilensis, a locust subspecies that causes extensive destruction of crops, the Cry7Ca1 protein from Bt strain BTH-13 identified in our previous study is of particular interest to locust prevention and control. However, the three-dimensional structure of Cry7Ca1 toxin (the active form of the Cry7Ca1 protein) and the mechanisms of the Cry7Ca1 insecticidal specificity remain largely elusive. Here, we report a 2.3 Å crystal structure of the Cry7Ca1 toxin and carry out a systematic comparison of all available Cry toxins structures. A cluster of six loops in Cry toxin domain II, named Apex here, are the most variable structural elements and were documented to contribute in insecticidal specificity. The Cry7Ca1 toxin Apex loops are different from those of other Cry toxins in length, conformation, and sequence. Electrostatic potential analysis further revealed that Cry7Ca1 is the only structure-available Cry toxin that does not have a high contrast of surface electrostatic potentials in the Apex. We further suggest that the L1/L2 loops in the center of the Cry7Ca1 Apex may be worthy of attention in future efforts to unravel the Cry7Ca1 insecticidal specificity as they exhibit unique features not found in the corresponding regions of other Cry toxins. Our work highlights the uniqueness of the Apex in the Cry7Ca1 toxin and may assist exploration of the insecticidal mechanism of the Cry7Ca1 against Locusta migratoria manilensis.

Cite

CITATION STYLE

APA

Jing, X., Yuan, Y., Wu, Y., Wu, D., Gong, P., & Gao, M. (2019). Crystal structure of Bacillus thuringiensis Cry7Ca1 toxin active against Locusta migratoria manilensis. Protein Science, 28(3), 609–619. https://doi.org/10.1002/pro.3561

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free