Abstract
Just as interactions of soluble proteins are affected by the solvent, membrane protein binding is influenced by the surface environment. This is particularly true for adhesion receptors because their function requires tightly apposed membranes. We sought to demonstrate, and further, to quantify the possible scale of this phenomenon by comparing the effective affinity and kinetic rates of an adhesion receptor (CD16b) placed in three distinct environments: red blood cells (RBCs), detached Chinese hamster ovary (CHO) cells, and K562 cells. Effective affinity reflects both the intrinsic receptor-ligand kinetics and the effectiveness of their presentation by the host membranes. Expression of CD16b, a low affinity Fcγ receptor, was established by either transfection or spontaneous insertion via its glycosylphosphatidylinositol anchor. Binding to IgG-coated RBCs, measured using a micropipette method, indicated a 50-fold increase in effective affinity for receptors on RBCs over CHO and K562 cells, whereas the off rates were similar for all three. Electron microscopy confirmed that specific tight contacts were broad in RBC-RBC conjugates but sparse in CHO-RBC conjugates. We suggest that through modulation of surface roughness the cytoskeleton can greatly impact the effectiveness of adhesion molecules, even those with no cytoplasmic structures. Implications for locomotion and static adhesion are discussed.
Cite
CITATION STYLE
Williams, T. E., Nagarajan, S., Selvaraj, P., & Zhu, C. (2001). Quantifying the Impact of Membrane Microtopology on Effective Two-dimensional Affinity. Journal of Biological Chemistry, 276(16), 13283–13288. https://doi.org/10.1074/jbc.M010427200
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.