Scaling up the process of titanium dioxide nanotube synthesis and its effect on photoelectrochemical properties

16Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

In this work, for the first time, the influence of scaling up the process of titanium dioxide nanotube (TiO2NT) synthesis on the photoelectrochemical properties of TiO2 nanotubes is presented. Titanium dioxide nanotubes were obtained on substrates of various sizes: 2 × 2, 4 × 4, 5 × 5, 6 × 6, and 8 × 8 cm2 . The electrode material was characterized using scanning electron microscopy as well as Raman and UV–vis spectroscopy in order to investigate their morphology, crystallinity, and absorbance ability, respectively. The obtained electrodes were used as photoanodes for the photoelectrochemical water splitting. The surface analysis was performed, and photocurrent values were determined depending on their place on the sample. Interestingly, the values of the obtained photocurrent densities in the center of each sample were similar and were about 80 µA·cm2 . The results of our work show evidence of a significant contribution to wider applications of materials based on TiO2 nanotubes not only in photoelectrochemistry but also in medicine, supercapacitors, and sensors.

Cite

CITATION STYLE

APA

Szkoda, M., Trzciński, K., Zarach, Z., Roda, D., Łapiński, M., & Nowak, A. P. (2021). Scaling up the process of titanium dioxide nanotube synthesis and its effect on photoelectrochemical properties. Materials, 14(19). https://doi.org/10.3390/ma14195686

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free