The biofilm-forming bacterium Myxococcus xanthus moves on surfaces as structured swarms utilizing type IV pili-dependent social (S) motility. In contrast to isolated cells that reverse their moving direction frequently, individual cells within swarms rarely reverse. The regulatory mechanisms that inhibit cellular reversal and promote the formation of swarms are not well understood. Here we show that exopolysaccharides (EPS), the major extracellular components of M. xanthus swarms, inhibit cellular reversal in a concentration-dependent manner. Thus, individual wild-type cells reverse less frequently in swarms due to high local EPS concentrations. In contrast, cells defective in EPS production hyper-reverse their moving direction and show severe defects in S-motility. Surprisingly, S-motility and wild-type reversal frequency are restored in double mutants that are defective in both EPS production and the Frz chemosensory system, indicating that EPS regulates cellular reversal in parallel to the Frz pathway. Here we clarify that besides functioning as the structural scaffold in biofilms, EPS is a self-produced signal that coordinates the group motion of the social bacterium M. xanthus.
CITATION STYLE
Zhou, T., & Nan, B. (2017). Exopolysaccharides promote Myxococcus xanthus social motility by inhibiting cellular reversals. Molecular Microbiology, 103(4), 729–743. https://doi.org/10.1111/mmi.13585
Mendeley helps you to discover research relevant for your work.