Abstract
We derive constraints that must be satisfied by the sources of ~10^{15} to ~10^{18} eV cosmic rays, under the assumption that the sources are Galactic. We show that while these constraints are not satisfied by ordinary supernovae (SNe), which are believed to be the sources of <10^{15} eV cosmic rays, they may be satisfied by the recently discovered class of trans-relativistic supernovae (TRSNe), which were observed in association with gamma-ray bursts. We define TRSNe as SNe that deposit a large fraction, f_R>10^{-2}, of their kinetic energy in mildly relativistic, \gamma\beta>1, ejecta. The high velocity ejecta enable particle acceleration to ~10^{18} eV, and the large value of f_R (compared to f_R~10^{-7} for ordinary SNe) ensures that if TRSNe produce the observed ~10^{18} eV cosmic ray flux, they do not overproduce the flux at lower energies. This, combined with the estimated rate and energy production of TRSNe, imply that Galactic TRSNe may be the sources of cosmic rays with energies up to ~10^{18}eV .
Cite
CITATION STYLE
Budnik, R., Katz, B., MacFadyen, A., & Waxman, E. (2008). Cosmic Rays from Transrelativistic Supernovae. The Astrophysical Journal, 673(2), 928–933. https://doi.org/10.1086/524923
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.