Abstract
Regulation of apoplastic NH4+ concentration in leaves of oilseed rape (Brassica napus L.) was studied using a vacuum-infiltration technique that allowed controlled manipulations of the apoplastic solution. In leaves infiltrated with NH4+-free solution, the apoplastic NH4+ concentration returned in less than 1.5 min to the preinfiltration level of 0.8 mM. Infiltrated 15NH4+ was rapidly diluted by 14NH4+/14NH3 effluxed from the cell. The exchange rate of 15N/14N over the apoplast due to combined 14N efflux from the symplast and 15N influx from the apoplastic solution was 29.4 μmol g-1 fresh weight h-1 between 0 and 5 min after infiltration. The net uptake of NH4+ into the leaf cells increased linearly with apoplastic NH4+ concentrations between 2 and 10 mM and could be partially inhibited by the channel inhibitors La3+ and tetraethylammonium and by Na+ and K+. When apoplastic pH increased from 5.0 to 8.0, the steady-state apoplastic NH4+ concentration decreased from 1.0 to 0.3 mM. Increasing temperature increased the rate of NH4+ net uptake and reduced the apoplastic steady-state NH4+ concentration. We conclude that the apoplastic solution in leaves of oilseed rape constitutes a highly dynamic NH4+ pool.
Cite
CITATION STYLE
Nielsen, K. H., & Schjoerring, J. K. (1998). Regulation of apoplastic NH4+ concentration in leaves of oilseed rape. Plant Physiology, 118(4), 1361–1368. https://doi.org/10.1104/pp.118.4.1361
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.