Abstract
Owing to the pharmacological potential of ATRA (all trans-retinoic acid), a series of retinamides and a 1-(retinoyl)-1,3-dicyclohexylurea compound were prepared by reacting ATRA with long chain alkyl or alkenyl fatty amines by using a 4-demethylaminopyridine (DMAP)-catalyzed N,N′-dicyclohexylcarbodiimide (DCC) coupling. The successful synthesis of the target compounds was demonstrated using a range of spectroscopic techniques. The cytotoxicity of the compounds was measured along with their ability to induce cell cycle arrest and apoptosis in human cancer cell lines MCF-7 (breast cancer) and HepG2 (liver cancer) and normal human cell line HEK293 (embryonic kidney). The results of cytotoxicity and flow cytometry data showed that the compounds had a moderate to strong effect against MCF-7 and HepG2 cells and were less toxic to HEK293 cells. N-oleyl-retinamide was found to be the most potent anticancer agent and was more effective against MCF-7 cells than HepG2 cells.
Author supplied keywords
Cite
CITATION STYLE
Al-Sheddi, E. S., Al-Oqail, M. M., Saquib, Q., Siddiqui, M. A., Musarrat, J., Al-Khedhairy, A. A., & Farshori, N. N. (2015). Novel all trans-retinoic acid derivatives: Cytotoxicity, inhibition of cell cycle progression and induction of apoptosis in human cancer cell lines. Molecules, 20(5), 8181–8197. https://doi.org/10.3390/molecules20058181
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.