Electrical properties and scaling behaviour of Sm3+ doped CaF2-bismuth borate glasses

41Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The electrical properties for 20Bi2O3-60B 2O3 (20-x)-CaF2-xSm2O3 glasses (0 ≤ x ≤ 2) were measured in the temperature range 297 K up to 629 K and in the frequency range 0.1-100 kHz. The d.c. and a.c. conductivity values and the dielectric loss (tan δ) values were found to increase with increasing Sm2O3 content, whereas the activation energy of conductivities and the dielectric constant decreased. These results were attributed to the introduction of the rare earth ions; promote the formation of a high number of non-bridging oxygen atoms, which facilitate the mobility of charge carriers. The frequency dependence of the a.c. conductivity follows the power law σac(w) =Aws. The frequency exponent (s) values (0.64 < s < 0.8) decrease with increasing temperature. This suggested that the a.c. conduction mechanism follows the correlated barrier hopping model (CBH). The dielectric constant (ε') and dielectric loss (tan δ values) were found to increase with increasing temperature and increasing Sm2O3 concentration in the glass. The a.c. conductivities as a function of frequency at different temperatures of a given glass superimposed onto a master curve (Roling scaling model). Furthermore, we have performed to scale the data as a function of composition. Two master curves were obtained, which suggested that there are differences in dominant charge carriers between glasses having Sm2O3 concentration ≥1 and glass of Sm2O3 concentration <1. © Indian Academy of Sciences.

Author supplied keywords

Cite

CITATION STYLE

APA

Ali, A. A., & Shaaban, M. H. (2011). Electrical properties and scaling behaviour of Sm3+ doped CaF2-bismuth borate glasses. Bulletin of Materials Science, 34(3), 491–498. https://doi.org/10.1007/s12034-011-0103-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free