Abstract
Hybrid powder coatings (HPC) with low friction and high hardness enhance the sliding speed and allow interlocking or meshing products to slide effortlessly within each other, saving energy. In automobiles, they decrease fuel consumption and greenhouse gas emission. In the present work, a new insight of the key role played by the coverage density of triethoxyphenylsilane (TPS) grafted to SiO2 nanoparticles over the friction coefficient, hardness, elastic modulus, and roughness of HPC is presented for the first time. In all cases, a very low amount (0.1 wt %) of functionalized or unfunctionalized SiO2 nanoparticles were added to a powder-coating formulation based on polyester resin. HPC formulated with functionalized nanoparticles at a suitable coverage density (HPC-TPS3) exhibited significantly low friction coefficient (μ = 0.12), strong wear resistance (under dry sliding conditions at 1 and 5 N of load), low roughness (Rq = 3.5 nm), and high hardness and elastic modulus on the surface. We demonstrated that it is possible to tune the macroscopic properties by varying only the coverage density of TPS that is chemically attached to SiO2 nanoparticles. Also, a physicochemical explanation was disclosed, wherein a hydrophilic-hydrophobic balance between -OH and phenyl groups was proposed. In all cases, the phenyl group allows the migration of functionalized nanoparticles through the polyester matrix, enhancing the hardness and elastic modulus on the surface. Thus, the functional nanomaterial design with tunable coverage density is a powerful tool to improve the physical and superficial properties of powder coatings using low amounts of nanomaterial.
Cite
CITATION STYLE
Arellano-Archán, E., Esneider Alcalá, M., Vega-Becerra, O. E., Lara-Ceniceros, T. E., & Bonilla-Cruz, J. (2018). Optimizing the Coverage Density of Functional Groups over SiO2 Nanoparticles: Toward High-Resistant and Low-Friction Hybrid Powder Coatings. ACS Omega, 3(12), 16934–16944. https://doi.org/10.1021/acsomega.8b01845
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.