Abstract
Glass fibres/epoxy resins composites have been performed as ideal materials to make support instruments for high-energy and nuclear physics experiments. The effects of the γ-ray irradiation on the fatigue strength, thermal conductivities and thermal stabilities of the glass fibres/epoxy resins composites were investigated. And a two-parameter fatigue life model was established to predict the fatigue life of the composites. Results revealed that the γ-ray irradiation could probably result in the degradation of epoxy resins, but hardly damage to the glass fibres. And the γ-ray irradiation treatment could significantly affect the fatigue strength of the composites at a low-cycle fatigue stage, but seldom influence at a high-cycle fatigue stage. Furthermore, the fabricated glass fibres/epoxy resins composites after the γ-ray irradiation still presented excellent fatigue strength, ideal thermal conductivities, remarkable dimensional and thermal stabilities, which can meet the actual requirements of normal operation for supporting instruments under high-energy and nuclear physics experiments.
Author supplied keywords
Cite
CITATION STYLE
Zheng, L. F., Wang, L. N., Wang, Z. Z., & Wang, L. (2018). Effects of γ-ray irradiation on the fatigue strength, thermal conductivities and thermal stabilities of the glass fibres/epoxy resins composites. Acta Metallurgica Sinica (English Letters), 31(1), 105–112. https://doi.org/10.1007/s40195-017-0692-2
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.