Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot-pressing

61Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this contribution, we demonstrate the optimization of the microstructures of the Pb0.85La0.1(Zr0.65Ti0.35)O3 (PLZT) relaxor ferroelectric ceramics and subsequent enhancements in their polarization and electrical resistivity by using a hot-pressing process. The resulting superior breakdown strength of hot-pressed PLZT enables the application of high electric field to induce a giant electrocaloric effect, in which the adiabatic change of temperature (ΔT) and the isothermal change of entropy (ΔS) are around 2 times greater than those of the samples prepared by the conventional sintering approach using muffle furnace. Moreover, the addition of extra PbO to make up the loss of Pb in the high-temperature sintering leads to the further improvements in the phase composition and electrical properties of PLZT, due to inhibition of the pyrochlore phase formation. The relationship among the sintering conditions, the content of excess PbO, and the microstructure as well as the electrical characteristics of PLZT have been investigated in a systematic manner. This work provides a facile approach to enhanced electrocaloric effect in bulk ceramics.

Cite

CITATION STYLE

APA

Zhang, G., Chen, Z., Fan, B., Liu, J., Chen, M., Shen, M., … Wang, Q. (2016). Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot-pressing. APL Materials, 4(6). https://doi.org/10.1063/1.4950844

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free