Non-parametric synthesis of laminar volumetric textures from a 2D sample

6Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The goal of this paper is to evaluate non-parametric algorithms that achieve 3D texture synthesis from a single 2D sample. The algorithms under study are variants of the algorithm proposed by Wei and Levoy [1]. Several authors have proposed different algorithms that intend to better reproduce, in the output texture, the diversity learned in the input sample. Hence, we turn our attention to the improved algorithm proposed by Kopf et al. [2] and the particular histogram matching approach of Chen and Wang [3]. In addition, we propose to visit the voxels during synthesis according to the 3D extension of space filling curves. We investigate the algorithms capability to reproduce anisotropic textures. In particular we are interested in laminar textures, i.e. textures made of anisotropic sheets stacked along a given direction. Examples of such textures are snapshots of dense carbons observed by high resolution transmission electronic microscopy (HRTEM). Beyond the traditional subjective evaluation of the synthesized textures, we propose a genuine quantitative benchmark for the analysis of the synthesized textures which consists in comparing input and output gray level statistics and patterns morphology.

Cite

CITATION STYLE

APA

Urs, R., Da Costa, J. P., Leyssale, J. M., Vignoles, G., & Germain, C. (2012). Non-parametric synthesis of laminar volumetric textures from a 2D sample. In BMVC 2012 - Electronic Proceedings of the British Machine Vision Conference 2012. British Machine Vision Association, BMVA. https://doi.org/10.5244/C.26.54

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free