Multi-Scale Tumor Localization Based on Priori Guidance-Based Segmentation Method for Osteosarcoma MRI Images

25Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Osteosarcoma is a malignant osteosarcoma that is extremely harmful to human health. Magnetic resonance imaging (MRI) technology is one of the commonly used methods for the imaging examination of osteosarcoma. Due to the large amount of osteosarcoma MRI image data and the complexity of detection, manual identification of osteosarcoma in MRI images is a time-consuming and labor-intensive task for doctors, and it is highly subjective, which can easily lead to missed and misdiagnosed problems. AI medical image-assisted diagnosis alleviates this problem. However, the brightness of MRI images and the multi-scale of osteosarcoma make existing studies still face great challenges in the identification of tumor boundaries. Based on this, this study proposed a prior guidance-based assisted segmentation method for MRI images of osteosarcoma, which is based on the few-shot technique for tumor segmentation and fine fitting. It not only solves the problem of multi-scale tumor localization, but also greatly improves the recognition accuracy of tumor boundaries. First, we preprocessed the MRI images using prior generation and normalization algorithms to reduce model performance degradation caused by irrelevant regions and high-level features. Then, we used a prior-guided feature abdominal muscle network to perform small-sample segmentation of tumors of different sizes based on features in the processed MRI images. Finally, using more than 80,000 MRI images from the Second Xiangya Hospital for experiments, the DOU value of the method proposed in this paper reached 0.945, which is at least 4.3% higher than other models in the experiment. We showed that our method specifically has higher prediction accuracy and lower resource consumption.

Cite

CITATION STYLE

APA

Lv, B., Liu, F., Gou, F., & Wu, J. (2022). Multi-Scale Tumor Localization Based on Priori Guidance-Based Segmentation Method for Osteosarcoma MRI Images. Mathematics, 10(12). https://doi.org/10.3390/math10122099

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free