Abstract
Angiogenic processes depend on the precise coordination of different cell types and a complex exchange of signals, many of which derive from new specific components of the provisional, angiogenesis-related, extracellular matrix (ECM). Angiogenesis-associated ECM components thus represent appealing targets for the selective delivery of therapeutic molecules to newly forming tumor vessels. Results of a previous study indicated that a high affinity recombinant antibody (L19) to ED-B, a domain contained in the angiogenesis-associated isoform of fibronectin (B-FN), selectively and efficiently targets tumor vessels. The present study shows that a fusion protein between L19 and interleukin 2 (L19-IL-2) mediates the selective delivery and concentration of IL-2 to tumor vasculature, thereby leading to a dramatic enhancement of the therapeutic properties of the cytokine. By contrast, IL-2 fused to an irrelevant recombinant antibody used as a control fusion protein showed neither accumulation in tumors nor therapeutic efficacy. Tumors in mice treated with L19-IL-2 were significantly smaller compared to those in animals treated with saline, the control fusion protein, or IL-2 alone (P = .003, .003, and 002, respectively). Moreover, no significant differences in size were observed among the tumors from the different control groups (using the control fusion protein, a mixture of IL-2 and L19, or saline alone). Immunohistochemical analysis of tumor infiltrates demonstrated a significantly higher number of T lymphocytes, natural killer cells, and macrophages, as well as increased interferon-γ (IFN-γ) accumulation, in tumors from animals treated with L19-IL-2 compared to tumors from control groups. The fact that ED-B is 100% homologous in human and mouse, thus ensuring that L19 reacts equally well with human and murine antigen, should ultimately expedite transfer of this reagent to clinical trials. © 2002 by The American Society of Hematology.
Cite
CITATION STYLE
Carnemolla, B., Borsi, L., Balza, E., Castellani, P., Meazza, R., Berndt, A., … Zardi, L. (2002). Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood, 99(5), 1659–1665. https://doi.org/10.1182/blood.V99.5.1659
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.