Accumulating evidences suggest that long non-coding RNAs (lncRNAs) perform important functions. Genome-wide chromatin-states area rich source of information about cellular state, yielding insights beyond what is typically obtained by transcriptome profiling. We propose an integrative method for genome-wide functional predictions of lncRNAs by combining chromatin states data with gene expression patterns. We first validated the method using protein-coding genes with known function annotations. Our validation results indicated that our integrative method performs better than co-expression analysis, and is accurate across different conditions. Next, by applying the integrative model genome-wide, we predicted the probable functions for more than 97% of human lncRNAs. The putative functions inferred by our method match with previously annotated by the targets of lncRNAs. Moreover, the linkage from the cellular processes influenced by cancer-associated lncRNAs to the cancer hallmarks provided a "lncRNA point-of-view" on tumor biology. Our approach provides a functional annotation of the lncRNAs, which we developed into a web-based application, LncRNA Ontology, to provide visualization, analysis, and downloading of lncRNA putative functions.
CITATION STYLE
Li, Y., Chen, H., Pan, T., Jiang, C., Zhao, Z., Wang, Z., … Li, X. (2015). LncRNA ontology: Inferring lncRNA functions based on chromatin states and expression patterns. Oncotarget, 6(37), 39793–39805. https://doi.org/10.18632/oncotarget.5794
Mendeley helps you to discover research relevant for your work.