Accumulating evidence suggests that Pax5 plays essential roles in B cell lineage commitment. However, molecular mechanisms of B cell-specific expression of Pax5 are not fully understood. Here, we applied insertional chromatin immunoprecipitation (iChIP) combined with stable isotope labeling using amino acids in cell culture (SILAC) (iChIP-SILAC) to direct identification of proteins interacting with the promoter region of the endogenous single-copy chicken Pax5 gene. By comparing B cells with macrophage-like cells trans-differentiated by ectopic expression of C/EBPβ, iChIP-SILAC detected B cell-specific interaction of a nuclear protein, Thy28/Thyn1, with the Pax5 1A promoter. Trans-differentiation of B cells into macrophage-like cells caused down-regulation of Thy28 expression. Loss-of-function of Thy28 induced decrease in Pax5 expression and recruitment of myosin-9 (MYH9), one of Thy28-interacting proteins, to the Pax5 1A promoter. Loss-of-function of MYH9 also induced decrease in Pax5 expression. Thus, our analysis revealed that Thy28 is functionally required for B cell-specific expression of Pax5 via recruitment of MYH9 to the Pax5 locus in chicken B cells.
CITATION STYLE
Fujita, T., Kitaura, F., & Fujii, H. (2015). A critical role of the Thy28-MYH9 axis in B cell-specific expression of the Pax5 gene in chicken B cells. PLoS ONE, 10(1). https://doi.org/10.1371/journal.pone.0116579
Mendeley helps you to discover research relevant for your work.