On the stability of sequential Monte Carlo methods in high dimensions

95Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

Abstract

We investigate the stability of a Sequential Monte Carlo (SMC) method applied to the problem of sampling from a target distribution on Rd for large d. It is well known [Bengtsson, Bickel and Li, In Probability and Statistics: Essays in Honor of David A. Freedman, D. Nolan and T. Speed, eds. (2008) 316-334 IMS; see also Pushing the Limits of Contemporary Statistics (2008) 318-329 IMS, Mon. Weather Rev. (2009) 136 (2009) 4629-4640] that using a single importance sampling step, one produces an approximation for the target that deteriorates as the dimension d increases, unless the number of Monte Carlo samples N increases at an exponential rate in d. We show that this degeneracy can be avoided by introducing a sequence of artificial targets, starting from a "simple" density and moving to the one of interest, using an SMC method to sample from the sequence; see, for example, Chopin [Biometrika 89 (2002) 539-551]; see also [J. R. Stat. Soc. Ser. B Stat. Methodol. 68 (2006) 411-436, Phys. Rev. Lett. 78 (1997) 2690-2693, Stat. Comput. 11 (2001) 125-139]. Using this class of SMC methods with a fixed number of samples, one can produce an approximation for which the effective sample size (ESS) converges to a random variable εN as d → ∞ with 1 < εN

Cite

CITATION STYLE

APA

Beskos, A., Crisan, D., & Jasra, A. (2014). On the stability of sequential Monte Carlo methods in high dimensions. Annals of Applied Probability, 24(4), 1396–1445. https://doi.org/10.1214/13-AAP951

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free