Dopamine and GABA Interaction in Basal Ganglia: GABA-A or GABA-B Receptor Stimulation Attenuates L-DOPA-Induced Striatal and Nigral ERK1/2 Signaling in a Rat Model of Parkinson’s Disease

  • Lynch S
  • Sivam S
N/ACitations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Parkinson’s disease (PD) is characterized by degeneration of nigrostriatal dopamine (DA) neurons. The primary drug used to treat PD symptoms is L-DOPA, but side effects such as dyskinesias limit its use. Previous findings show that L-DOPA treatment induces extracellular signal-regulated kinase (ERK1/2), a MAP-kinase protein. γ-aminobutyric acid (GABA) is intimately involved in basal ganglia function. Our previous study using a unilaterally lesioned rat model of PD indicated that elevating GABA levels by GABA transaminase inhibitor, aminooxyacetic acid significantly attenuated L-DOPA-induced ERK phosphorylation in the striatum and substantia nigra (SN). The aim of the present study was to assess the role of GABA-A and GABA-B receptor by using a selective agonists, muscimol and baclofen respectively, on L-DOPA-induced ERK phosphorylation in the striatum and SN. Unilaterally 6-OHDA-lesioned rats were prescreened by apomorphine induced rotation test for the extent of DA loss. Lesioned rats were treated with L-DOPA alone or after muscimol or baclofen pretreatment. Appropriate control groups were used. Phospho-ERK levels, tyrosine hydroxylase (to ascertain DA loss) and substance P (an indirect marker for DA loss) levels were assessed by immunohistochemistry using coronal slices at the level of striatum and SN. L-DOPA administration induced a robust increase (>300%) in phospho-ERK1/2 levels in the striatum and SN. Muscimol as well as baclofen pretreatment attenuated the L-DOPA-induced increase in phospho-ERK1/2 levels by >60% in the striatum and SN. Muscimol and baclofen pretreatment also greatly reduced the number of L-DOPA induced phospho-ERK1/2 stained cells in the striatum as well as the contralateral rotational behavior. The present data taken together with our previous study indicate that the L-DOPA induced increase in ERK1/2 is attenuated by GABA via a GABA-A and GABA-B receptor linked mechanism. The study provides further insight into a dopamine-GABA-ERK interaction in the therapeutic and/or side effects of L-DOPA in the basal ganglia.

Cite

CITATION STYLE

APA

Lynch, S., & Sivam, S. P. (2013). Dopamine and GABA Interaction in Basal Ganglia: GABA-A or GABA-B Receptor Stimulation Attenuates L-DOPA-Induced Striatal and Nigral ERK1/2 Signaling in a Rat Model of Parkinson’s Disease. Journal of Behavioral and Brain Science, 03(06), 479–488. https://doi.org/10.4236/jbbs.2013.36050

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free