Abstract
Among the interactions which govern NMR spectra, spin-spin coupling interactions provide the most direct form of structural information which is of interest to chemists. Dipolar coupling may be used to measure internuclear distances directly and J coupling may be used to identify bonding interactions and provide insights into the nature of the bonds. It is well known that the presence of a quadrupolar interaction reintroduces the dipolar interaction in spinning samples; however, similarly to the J coupling, this information is often lost if the observed nucleus is quadrupolar due to quadrupolar spectral broadening. Here we show for multiple spin pairs that double-rotation (DOR) NMR fully removes the effects of the quadrupolar interaction on the NMR spectrum leaving only the effects of dipolar and J couplings. We also demonstrate that the J coupling multiplets do not disappear for quadrupolar A2 spin pairs as they do for spin-12 nuclei. With DOR NMR, it is then straightforward to measure homonuclear J coupling constants between magnetically equivalent quadrupolar nuclei. A deeper understanding of the origins of the magnitudes and dominant mechanisms of J coupling for quadrupolar spin pairs in a series of related compounds is obtained by decomposing computed J coupling constants into their major molecular orbital contributions. © 2013 AIP Publishing LLC.
Cite
CITATION STYLE
Perras, F. A., & Bryce, D. L. (2013). Measuring dipolar and J coupling between quadrupolar nuclei using double-rotation NMR. Journal of Chemical Physics, 138(17). https://doi.org/10.1063/1.4802192
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.